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Organosulfones are very important intermediates in organic
synthesis1 and industrial application.2 Especially, diaryl
sulfones deserve much attention as they are intermediates in
the drug industry. For example, diphenyl sulfone is used as an
intermediate for DAPSONE (4,4'-diamino-diphenyl sulfone,
effective for leprosy treatment).3 Sulfones are usually prepared
by oxidation of the corresponding sulfides and sulfoxides or by
a displacement reaction of sodium arenesulfinate with an
appropriate alkyl halide.4 Some catalysts such as metal
halides,1a zeolites,5 Bronsted acids,6 lithium perchlorate7 and
Bi(OTf)3

8 have been reported to catalyse the sulfonylation of
aromatics. More recently, Fe(III) exchanged montmorillonite
clay,9 indium triflate10 and BiCl3-triflic acid11 have been
successfully used for catalytic sulfonylation of aromatics. Each
of the above methods has its own merit, but some methods
have not been entirely satisfactory with drawbacks such as low
yield, long reaction time, emerging problems of corrosiveness,
tedious workup and a requirement for special techniques.
Consequently, it is desirable to develop improved methods for
the synthesis of diaryl sulfones under good and environmental
friendly conditions.

Solid superacids have received considerable attention as
powerful reaction media for effecting various transformations.
In addition, solid superacids are attractive because they are
stable, reusable, ‘green’ and cheap. Recently, we have
developed efficient and convenient procedures for the
preparation of some organic compounds catalysed by
ZrO2/SO4

2- or TiO2/SO4
2- solid superacid.12-18 As a part of

ongoing work on solid superacid catalysis, we now describe a
simple and practical method for the sulfonylation of aromatic
compounds in the presence of ZrO2/S2O8

2- affording diaryl
sulfones in 78–93% yields (Scheme 1).

To the best of our knowledge, this technique for the
preparation of aromatic sulfones using solid superacid is
completely novel and has not been reported in the literature and
so we report in this paper for the first time the arylsulfonylation
of aromatics catalysed by ZrO2/S2O8

2- solid superacid. The
process in its entirety involves a simple mixing of arylsulfonyl
chlorides 1 and aromatic compounds 2 in the presence of
ZrO2/S2O8

2- under heating conditions for the time and
temperature specified in Table 1. The purities of products 3 were
established by 1H NMR, IR and melting point determination.

It should be noted that in the absence of catalyst no product
was observed even with a prolonged heating time. The lowering
of reaction temperature was detrimental to the reaction. 
For example, for entry 2, at 100°C for 2.5 hours only 35% yield

of product was obtained, whereas 85% yield was obtained at
140°C for 0.5 hour. Substituent effects have been studied in
these reactions. According to the data listed in the Table 1, it is
clear that electron-donating groups have increased the reaction
speed as well as reaction yields (Table 1, entries 2–9, 15–21).
On the other hand, electron-withdrawing groups have decreased
yields and increased reaction time (Table 1, 11–13, 22 and 23).
When one strong electron-withdrawing group is on the aromatic
hydrocarbon 2, the reaction does not take place at all (Table 1,
entries 24,25). This may be due to the strongly electron-
withdrawing NO2 or CN that will reduce the reactivity of the
aromatic ring. The yields and reaction conditions of our method
have been compared with actual figures for other methods. We
only use 0.5 hour obtaining 85% yield product in the p-
toluenesulfonylation of toluene by ZrO2/S2O8

2- solid superacid
catalyst in our experiment, compared to other reported catalysts
such as InX3 (lit.10 2.0 hours, 80% yield) and zeolite beta (lit.11

24 hours, 53% yield). So the ZrO2/S2O8
2- solid superacid is a

better catalyst to this kind of reaction.
In conclusion, we have developed a practical and efficient

method for the synthesis of aromatic sulfones under solvent-
free conditions using aromatic compounds and arylsulfonyl
chlorides in the presence of ZrO2/S2O8

2-.This method is
superior from the view of operation simplicity, higher yields,
short reaction times, non-corrosion, and friendliness to the
environment than previously reported methods.

Experimental 

Melting points are uncorrected.1H NMR spectra were determined on a
Varian VXR-300S (300 MHz) spectrometer using CDCl3 as solvent and
tetramethylsilane (TMS) as internal reference. IR spectra were
determined on an FTS-175C spectrometer. All the liquid parent
materials were freshly distilled. The products were also characterised by
comparison of their melting points with literature values. The catalyst
ZrO2/S2O8

2- solid superacid was prepared as follows. Zr(OH)4 was
infused in (NH4)2S2O8 (1 mol/l) for 4 hours, then filtered off, dried at
110°C for 2 hours, crushed to below 150 mesh, calcined in a furnace at
600°C for 4 hours and finally stored in a desiccator until used.

General procedure for the preparation of aromatic sulfones:
A mixture of arylsulfonyl chloride 1 (2.00 mmol), aromatic compound
2 (8.00 mmol) and ZrO2/S2O8

2- (200 mg) was stirred at a suitable
temperature for the corresponding time shown in the Table 1. The
progress of the reaction was monitored with TLC. After completion 
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of the reaction, the mixture was cooled and extracted with ether 
(10 ml × 3). Evaporation of the solvent under reduced pressure
afforded the crude product. The crude product was purified by column
chromatography on silica gel using hexane/ethylacetate (9:1) as
eluent. Selected spectral data of some of the products are given below:

p-Tolyl phenyl sulfone (Table 1, entry 1 or 15): IR 1153, 1307 cm-1;
δH 2.40 (s, 3H, CH3), 7.30 (d, 2H, J=8.3Hz, Ar-H), 7.48–7.55 
(m, 3H, Ar-H), 7.85(d, 2H, J=8.3Hz, Ar-H), 7.90–7.95 (m. 2H, Ar-H).

Di(p-tolyl) sulfone (Table 1, entry 2): IR 1161, 1310 cm-1; δH 2.39
(s, 6H, CH3), 7.27 (d, 4H, J=9.0Hz, Ar-H), 7.80 (d, 4 H, J=9.0 Hz,
Ar-H).

(2,4-Dimethylphenyl) p-tolyl sulfone (Table 1, entry 4): IR 1153,
1310 cm-1; δH 2.36 (s, 3H, CH3), 2.38 (s, 3H, CH3), 2.40 (s, 3H, CH3),
6.99 (s, 1H, Ar-H), 7.13 (d, 1H, J=7.8Hz, Ar-H), 7.23 (d, 2H, J=8.8Hz,
Ar-H), 7.70 (d, 2H, J=8.8Hz, Ar-H), 8.03 (d, 1H, J=7.8Hz, Ar-H).

(2,5-Dimethylphenyl) p-tolyl sulfone (Table 1, entry 5): IR 1146,
1300 cm-1; δH 2.36 (s, 3H, CH3), 2.41 (s, 6H, CH3), 7.06 (d, 1H,
J=7.8Hz, Ar-H), 7.21 (d, 1H, J=7.8Hz, Ar-H), 7.26 (d, 2H, J=8.8Hz,
Ar-H), 7.72 (d, 2H, J=8.8Hz, Ar-H), 7.98 (s, 1H, Ar-H). 

(2,4,6-Trimethylphenyl) p-tolyl sulfone (Table 1, entry 6): IR 1149,
1309 cm-1; δH 2.62 (s, 3H, CH3), 2.72 (s, 3H, CH3), 2.92 (s, 6H, CH3),
7.59 (d, 2H, J=8Hz, CH3), 7.59 (s, 2H, Ar-H), 8.00 (d, 2H, J=8Hz,
Ar-H).

(4-Methoxyphenyl) p-tolyl sulfone (Table 1, entry 9): IR 638, 834,
1007, 1360, 1599, 2910, 3300 cm-1; δH 2.36 (s, 3H, CH3), 3.81 (s, 3H,
OCH3), 6.95 (d, 2H, J=8.3Hz, Ar-H), 7.31 (d, 2H, J=7.4Hz, Ar-H),
7.85 (d, 2H, J=8.3Hz, Ar-H), 7.90 (d, 2H, J=7.4Hz, Ar-H). 

β-Naphthyl p-tolyl sulfone (Table 1, entry 10): IR 1152, 1312 cm-1;
δH 2.38 (s, 3H, CH3), 7.27(d, 2H, Ar-H), 7.59 (m, 2H, Ar-H), 7.78
(d, 1H, Ar-H), 7.83 (d, 2H), 7.87 (m, 1H, Ar-H), 7.93 (d, 1H,
Ar-H), 7.97 (d, 1H, Ar-H), 8.52 (s, 1H, Ar-H).

(4-Fluorophenyl) p-tolyl sulfone (Table 1, entry 11): IR 1155, 1316
cm-1; δH 2.40 (s, 3H, CH3), 7.16 (m, 2H, Ar-H), 7.31(d, 2H, J=8.0Hz,
Ar-H), 7.81(d, 2H, J=8.0Hz, Ar-H), 7.90–7.95 (m, 2H, Ar-H).

(4-Chlorophenyl) p-tolyl sulfone (Table 1, entry 12): IR 1153,
1315 cm-1; δH 2.40 (s, 3H, CH3), 7.31 (d, 2H, J=7.8Hz, Ar-H),
7.40–7.50 (m, 2H, Ar-H), 7.80 (d, 2H, J=12.0Hz, Ar-H), 7.85–7.90
(m, 2H, Ar-H).

(4-Bromophenyl) p-tolyl sulfone (Table 1, entry 13): IR 1152,
1314 cm-1; δH 2.54 (s, 3H, CH3), 7.45 (d, 2H, J=8.6Hz, Ar-H),
7.77–7.92 (m, 4H, Ar-H), 7.95 (d, 2H, J=8.6Hz, Ar-H).

Diphenyl sulfone (Table 1, entry 14): IR 1148, 1287 cm-1; δH 7.50
(m, 6H, CH3), 7.88 (m, 4H, Ar-H).

(2,4-Dimethylphenyl) phenyl sulfone (Table 1, entry 17): IR 1151,
1306 cm-1; δH 2.32 (s, 3H, CH3), 2.37 (s, 3H, CH3), 6.99 (s, 1H,
Ar-H), 7.16 (d, 1H, J=7.8Hz, Ar-H), 7.46 (m, 3H, Ar-H), 7.81 (d, 2H,
J=8.8Hz, Ar-H), 8.07 (d, 1H, J=7.8Hz, Ar-H).

(2,4,6-Trimethylphenyl) phenyl sulfone (Table 1, entry 19):
IR 1148, 1306 cm-1; δH 2.30 (s, 3H, CH3), 2.59 (s, 6H, CH3), 6.94 
(s, 2H, Ar-H), 7.49–7.79 (m, 5H, Ar-H).

(4-Chlorophenyl) phenyl sulfone (Table 1, entry 22): IR 1152,
1318 cm-1; δH 7.50–7.59 (m, 5H, Ar-H), 7.82–7.93 (m, 4H, Ar-H).
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